

Typical Features

- ◆ Wide input voltage range (4:1), Output Power 40W
- ◆ Efficiency up to 90% (Typ.)
- ◆ Stand-by power consumption 3W (Typ.)
- Output fast start up
- ◆ Continuous short circuit protection, self-recovery
- Input under voltage, output over voltage, short circuit
 & over current protections
- ◆ Isolation voltage 3000VDC/1500VAC
- ◆ Operating temperature from -40°C to +85°C
- ◆ Good EMI performance
- ◆ International standard pin-out

Application Field

FD40-110SXXB3C3(-XXX) Series --- DC-DC modular converters with wide input voltage range (4:1), super-fast start up, isolated & regulated single output 40W, and with multi-protection of under-voltage, output over current, output short circuit and output over voltage. This series of products can be widely used for 72V, 96V and 110V of industrial control, electrical power, communication, train engine, industrial robot and rail-way electronic devices, etc. The additional EMC circuit diagram is recommended in this data sheet for the application with higher EMC requirement.

Турі	ical Product List													
Certificate	Range (VDC) Voltage/Current (m		(mA) 1	Current Гур. @ al Volt.	Max. Capacitive Load	No	ple & oise √p-p)	@Ful	iency I load %)					
		Nom.	Range	Vo (VDC)	lo(A) Max/Min	Full Load	No Load	u F	Тур	Max	Min	Тур.		
	*FD40-110S3V3B3C3					3.3	10	345	25	10000	50	100	85	88
	FD40-110S05B3C3			5	8.0	420	25	8000	50	100	86	89		
	FD40-110S12B3C3	440		12	3.333	420	2	3300	150	200	87	90		
-	*FD40-110S15B3C3 FD40-110S24B3C3	110	40-160	15	2.667	420	2	1200	150	200	87	90		
				24	1.667	420	2	680	150	200	87	90		
	FD40-110S48B3C3			48	0.833	420	2	470	150	200	86	89		

Note 1 - * marked part has been developed in process. The suffix -H indicates the part with Heat sink, -T (H) indicates a kind of chassis package (with heat sink), -TS (H) indicates a kind of package of DIN Rail (with heat sink) which rail width is 35mm.

Note 2 - The maximum capacitive load is the capacitance allowed to be used when the power supply operates at full load. The converter may not start if the capacitor exceeds this value.

Note 3 - The chip could operate at jitter frequency situation at no load or light load to decrease no-load power consumption, so no load is not available. \geq 5% load or a high-frequency resistance E-cap(\geq 470uF) load is recommended, to avoid the output ripple increasing.

Note 5 - Please contact Aipu sales for other output voltages requirement in this series but not listed in this table.

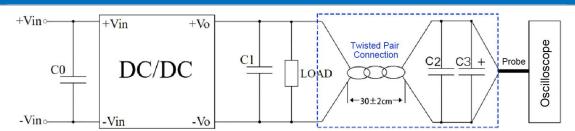
Input Specifications					
Item	Operating conditions	Min	Тур.	Max	Unit
Standby power consumption	Full input voltage range	1	3	1	W
Input under-voltage protection	110V Nominal Input Series	32	1	40	VDC
Input inrush voltage (1sec.max)	110V Nominal Input Series	-0.7	1	160	VDC
Start-up time	I	1	10	1	mS
Hot plug	I		Unavailable		
Input Filter	I		Pi f	ilter	
Reflected ripple current	110V Nominal Input Series		100m	A (Тур)	
	Turn-on the converter	No connection or connect to High level (3.5		.5V-12VDC)	
CTRL*	Shut-off the converter	Connect to	o -Vin or connec	/ W 40 VD 160 VD / ms Inavailable Pi filter	-1.2VDC)
	Current value for shutting off		1mA		

^{*}The voltage of CTRL is relative to -Vin.

Output Specifications						
Item	Operating conditions		Min	Тур.	Мах	Unit
Output Voltage Accuracy	Full input voltage range		/	±1	±2	%
Voltage Regulation	Full voltage range, full loa	Full voltage range, full load		±0.5	±1	%
Load Regulation	10%~100% load			±0.5	±1	%
20%-100%load, 20MHz		3.3V, 5V output	/	50	100	.,
Ripple & Noise	bandwidth	Others	/	150	200	mVp-p
Dynamic recovery time		1	/	300	500	uS
	25% rated load step, nominal input voltage	3.3V, 5V output	/	±5	±8	%
Dynamic response deviation	nonina input voltage	Z 3.3V, 5V output Others	/	±3	±5	%
Turn-on delay time	Nominal input voltage		/	10	1	mS
Output voltage adjustment (Trim)			/	1	10	%Vo
Over-voltage Protection			110	150	190	%Vo
Over-current Protection	input voitage range	Input voltage range		150	220	%lo
Short circuit Protection			Hid	ccup, contin	uous, self-reco	very

Note - the Ripple & noise \leq 5%Vo at 0% - 5% load, please refer to the following Ripple & Noise test Instructions.

General Specification	s				
Item	Operating conditions	Min	Тур.	Max	Unit
Switching Frequency	Operating mode (PWM)	/	300	1	KHz
Operating Temperature	Refer to the temperature derating graph	-40	1	+85	°C
Storage Temperature	1	-55	1	+125	
Case temperature	Within the operating derating range	1	1	+105	$^{\circ}$



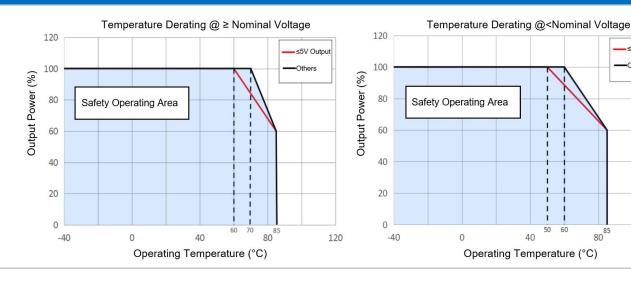
Pin soldering temperature	1.5mm from the case, 10S		1	1	300		
Relative Humidity	No condensation		5	1	95	%RH	
1 1 2 37 11	I/P-O/P, test 1min, leakage curre	ent <0.5mA	3000	1	1	VDC	
Isolation Voltage	I/P-O/P, test 1min, leakage curre	ent <5mA	1500	1	1	VAC	
Isolation capacitor	Typical	/pical IL-HDBK-217F@25℃		2000	1	pF	
MTBF	MIL-HDBK-217F@25℃		1000	1	1	K hours	
Cooling method		Nature air					
Case material	Aluminum						
	Part No. Weight (Typ) Dimensions L x W x H						
	FD40-110SXXB3C3	30g	50.80x25.40x13.00 mm 2.000			2.000x1.000x0.511 inch	
	FD40-110SXXB3C3-H	42g	50.80x25.40x2	50.80x25.40x23.00 mm		0.906 inch	
Weight/Dimension	FD40-110SXXB3C3-T	51g	76.00x31.50x22.30 mm		2.992x1.240x0.877 inch		
	FD40-110SXXB3C3-TH	63g	g 76.00x31.50x32.50 mm 2.9		2.992x1.240x	1.279 inch	
	FD40-110SXXB3C3-TS	71g	76.00x31.50x2	76.00x31.50x27.00 mm 2.		1.063 inch	
	FD40-110XXSXXB3C3-TSH	83g	76.00x31.50x3	6.50 mm	2.992x1.240x	1.437 inch	

EMC Performance

m	Sub Item	Testing standard	Performance/Class	
EMI	CE	CISPR32/EN55032	CLASS A (with the Recommended EMC Circuit)	
	RS	IEC/EN61000-4-3	10V/m Perf.Criteria A (with the Recommended EMC Circuit)	
	cs	IEC/EN61000-4-6	3Vr.m.s Perf.Criteria A (with the Recommended EMC Circuit)	
MS	ESD	IEC/EN61000-4-2	Contact ±4KV Perf.Criteria B	
	EFT	IEC/EN61000-4-4	±2KV Perf.Criteria B (with the Recommended EMC Circuit)	
	Voltage dips &	IEC/EN61000-4-11	0%~70% Perf.Criteria B	
ΞI	MI	MI CE RS CS ESD EFT	MI CE CISPR32/EN55032 RS IEC/EN61000-4-3 CS IEC/EN61000-4-6 ESD IEC/EN61000-4-2 EFT IEC/EN61000-4-1 Voltage dips & IEC/EN61000-4-11	

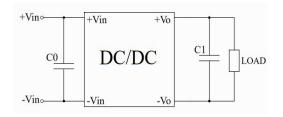
Ripple & Noise Test Instruction (Twisted Pair Method, 20MHz Bandwidth)

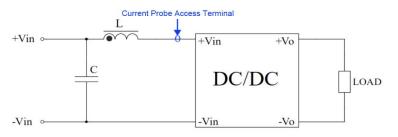
- 1) The Ripple & noise test needs 12# twisted pair cables, an oscilloscope which should be set at the Sample Mode, bandwidth 20MHz. 100M bandwidth probe with cap and ground removed. C2(0.1uF) polypropylene capacitor and C3(10uF) high-frequency low-resistance electrolytic capacitor are connected in parallel with the probes and one side of the twisted pair. C0 & C1 refer to the application circuit recommended.
- 2) The power supply output connects to the load by the cables. The other side of the twisted pair (length 30cm±2 cm) should be connected in parallel with the load, the polarity of the output and the oscilloscope probe should not be reversed. The test can be started after input power on.
- 3) A ≥5% load or a high-frequency resistance E-cap(≥470uF) load is recommended, to avoid the output ripple increasing.



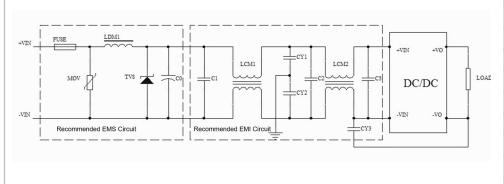
≤5V Output

120


80 85


Recommended Circuits Diagrams for Application

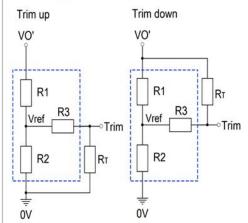
1. All this series of converters will be tested according to this circuit diagram below before shipping. The output ripple could be decreased with C0 or C1 capacitance increased, the output capacitance must be less than the maximum capacitive load.


Components	Parameter
C0	47-100uF/200V
C1	470uF/50V

2. Input reflected ripple current test circuit diagram

Components	Parameter
С	220uF/200V
L	4.7uH/15A

3. Recommended EMC circuit diagram

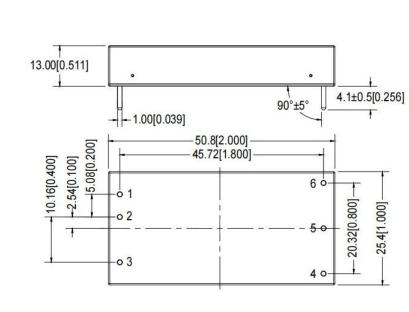


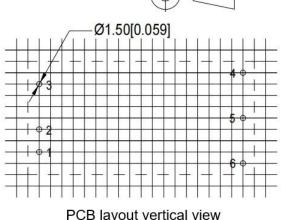
10V input series BD by customer
BD by customer
-
14D201K
56uH
SMCJ170A
560uF/200V
4.7uF/200V
15mH
56uH
1nF/3KV

Rrim Resistance calculating fomula

up:
$$R_{T} = \frac{aR_2}{R_2 - a} - R_3$$
 $a = \frac{Vref}{Vo' - Vref} \cdot R_1$

down:
$$R_T = \frac{aR_1}{R_1-a} - R_3$$
 $a = \frac{Vo'-Vref}{Vref} \cdot R_2$


 R_{T} is the Trim resistance α is a self-defined parameter


Vo' is the required Up-voltage or Down-voltage

<u></u>	÷				
5761 I	0V 0V		Output Voltage	Trim ii	nte
Note: Trim up	a & down circuits,		Vout(VDC)	R1(KΩ)	-
the componer	nts in the dotted area are inside of the conve	rter. 📙	voui(vbo)	111(1122)	Ľ

Output Voltage	Trim i	nternal circ	uit paramete	rs
Vout(VDC)	R1(KΩ)	R2(KΩ)	R3(KΩ)	Vref(V)
3.3	24	14.53	68	1.25
5	24	24	68	2.5
12	18	4.7	30	2.5
15	24	4.78	30	2.5
24	25.5	2.955	18	2.5

B3C3 Mechanical Dimensions (without Heat Sink)

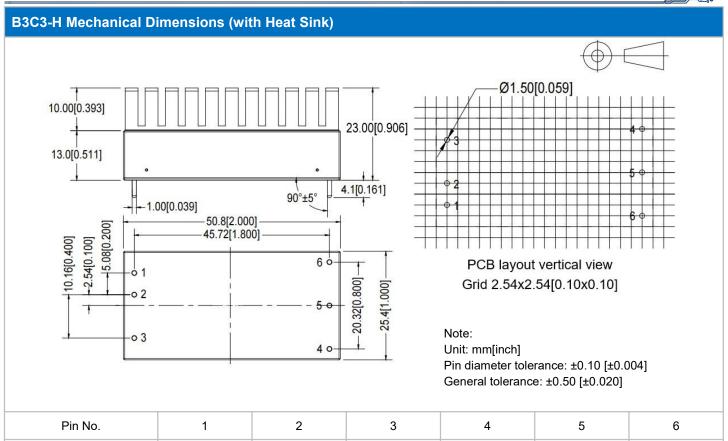
PCB layout vertical view Grid 2.54x2.54[0.10x0.10]

Note:

Unit: mm[inch]

Pin diameter tolerance: ±0.10 [±0.004] General tolerance: ±0.50 [±0.020]

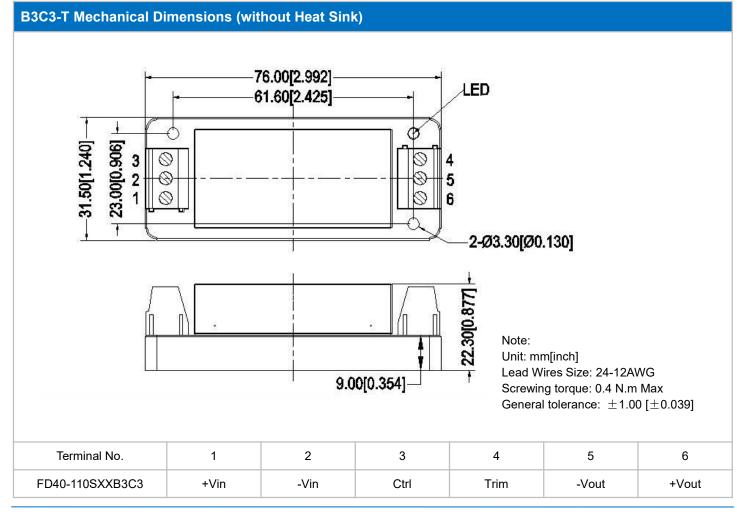
Pin No.	1	2	3	4	5	6
FD40-110SXXB3C3	+Vin	-Vin	Ctrl	Trim	-Vout	+Vout


FD40-110SXXB3C3

+Vin

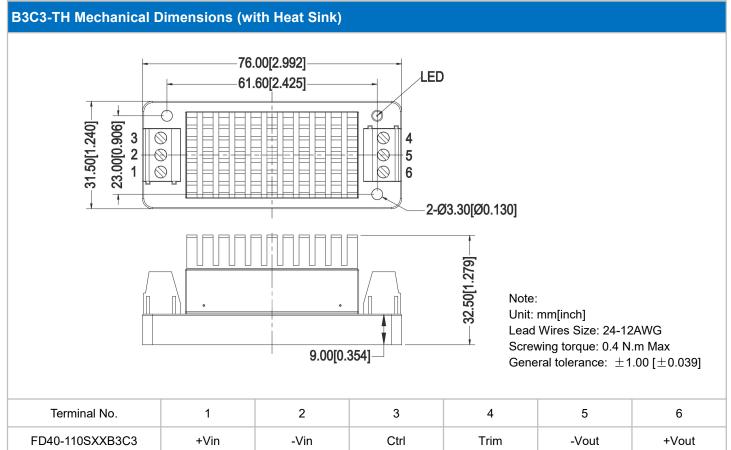
-Vin

DC/DC Converter FD40-110SXXB3C3(-XXX) Series

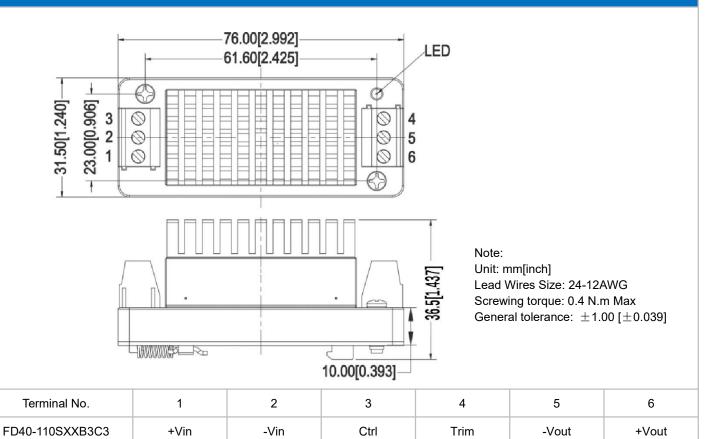


Ctrl

Trim


-Vout

+Vout



Application Notice

- 1. The products should be used according to the specifications in this datasheet, otherwise it could be permanently damaged.
- 2. The product performance in this datasheet cannot be guaranteed if it works at a lower load than the minimum load defined.
- 3. The product performance in this datasheet cannot be guaranteed if it works at over-load condition.
- 4. Unless otherwise specified, all values or indicators in this datasheet are tested at Ta=25°C, humidity<75%RH, nominal input voltage and rated load (pure resistance load).
- 5. All values or indicators in this datasheet had been tested based on Aipupower test specifications.
- 6. The specifications are specially for the parts listed in this datasheet, any other non-standard model performances could be out of the specifications. Please contact our technician for specific requirements.
- 7. Aipupower can provide customization service.

Guangzhou Aipu Electron Technology Co., Ltd

Address: Building 4, HEDY Park, No.63, Punan Road, Huangpu Dist, Guangzhou, China.

Tel: 86-20-84206763 Fax: 86-20-84206762 HOTLINE: 400-889-8821 E-mail: sales@aipu-elec.com Website: https://www.aipupower.com